Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116270, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520997

RESUMO

Seagrass wrack plays multiple ecological roles in coastal habitats but is often removed from beaches and used for economical processing, neglecting its potential role in sustaining dune plant establishment under changing climate scenarios. Rainwater shortage is a major stress for seedlings and reduced precipitations are expected in some coastal areas. We investigated in mesocosm how wrack influenced seedling performance of Cakile maritima, Thinopyrum junceum, and Calamagrostis arenaria under current and reduced precipitation. We also assessed wrack water holding capacity and leachate chemical/physical properties. Wrack stimulated seedling growth while reduced precipitation decreased root development. Wrack mitigated the effects of reduced precipitation on T. junceum and C. arenaria biomass. Wrack retained water up to five-fold its weight, increased water pH, conductivity, and nutrient content. Wrack promotes dune colonization by vegetation even under rainwater shortage. Thus, the maintenance of this natural resource on beaches is critical for improving dune resilience against climate changes.


Assuntos
Ecossistema , Plantas , Poaceae , Plântula , Recursos Naturais , Mudança Climática , Água
2.
Waste Manag ; 168: 235-245, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37320891

RESUMO

Levulinic acid production by acid-catalyzed hydrothermal conversion of (ligno)cellulosic biomass generates significant amounts of carbonaceous hydrochar, which is currently considered a final waste. In this work, the hydrochar recovered after the levulinic acid production, was subjected to cascade pyrolysis and chemical activation treatments (by H3PO4 or KOH), to synthesize activated carbons. The pyrolysis post-treatment was already effective in improving the surface properties of the raw hydrochar (Specific Surface Area: 388 m2/g, VP: 0.22 cm3/g, VMESO: 0.07 cm3/g, VMICRO: 0.14 cm3/g), by removing volatile compounds. KOH activation resulted as the most appropriate for further improving the surface properties of the pyrolyzed hydrochar, showing the best surface properties (Specific Surface Area: 1421 m2/g, VP: 0.63 cm3/g, VMESO: 0.10 cm3/g, VMICRO: 0.52 cm3/g), which synergistically makes it a promising system towards adsorption of CO2 (∼90 mg/g) and methylene blue (∼248 mg/g). In addition, promising surface properties can be achieved after direct chemical activation of the raw hazelnut shells, preferably by H3PO4 (Specific Surface Area: 1918 m2/g, VP: 1.34 cm3/g, VMESO: 0.82 cm3/g, VMICRO: 0.50 cm3/g), but this choice is not the smartest, as it does not allow the valorization of the cellulose fraction to levulinic acid. Our approach paves the way for possible uses of these hydrochars originating from the levulinic acid chain for new environmental applications, thus smartly closing the biorefinery loop of the hazelnut shells.


Assuntos
Celulose , Carvão Vegetal , Carvão Vegetal/química , Ácidos Levulínicos , Azul de Metileno , Adsorção
3.
Environ Pollut ; 316(Pt 2): 120738, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435282

RESUMO

Pollution associated to marine plastic litter is raising increasing concerns due to its potential harmful effects on human health, biota, and coastal ecosystems. However, limited information is available on the degradation behavior of plastics, especially biodegradable ones, in dune habitats. Moreover, the effects of plastics on dune plant growth and ability to withstand environmental stresses and invasion by non-native plants have been largely neglected. This is a particularly relevant issue since biological invasions are major threats to dune ecosystems. In this 18-month study, we examined the degradation behavior of two plastic bags, non-biodegradable (NBP) or biodegradable/compostable (BP), in the dune environment by visual observations and analytical techniques. Concomitantly, we investigated the individual and combined effects of bag type and sand burial (no burial vs. partial burial) on the performance of a native dune plant (Thinopyrum junceum) and an invasive plant (Carpobrotus sp.) and on their interaction. NBP did not show relevant degradation signs over the experimental period as expected. BP exhibited gradual surface modifications and changes in chemical functionality and were almost disintegrated after 18 months. Bags and burial reduced independently T. junceum survival and growth, and most plants died within 8 months of plastic exposure. Bags and burial did not affect Carpobrotus survival. However, burial decreased Carpobrotus growth while NBP increased it. Both plastics increased Carpobrotus competitive ability, and no T. junceum plants survived to co-occurrent Carpobrotus, BP, and burial. These findings indicate that removing all littered plastics from beach-dune systems not only is critical to reduce plastic pollution but also to prevent further spread of invasive species in coastal dunes.


Assuntos
Plásticos , Areia , Humanos , Ecossistema , Desenvolvimento Vegetal , Espécies Introduzidas
4.
Molecules ; 29(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38202709

RESUMO

Diphenolic acid, or 4,4-bis(4-hydroxyphenyl)pentanoic acid, represents one of the potentially most interesting bio-products obtainable from the levulinic acid supply-chain. It represents a valuable candidate for the replacement of bisphenol A, which is strongly questioned for its toxicological issues. Diphenolic acid synthesis involves the condensation reaction between phenol and levulinic acid and requires the presence of a Brønsted acid as a catalyst. In this review, the state of the art related to the catalytic issues of its synthesis have been critically discussed, with particular attention to the heterogeneous systems, the reference benchmark being represented by the homogeneous acids. The main opportunities in the field of heterogeneous catalysis are deeply discussed, as well as the bottlenecks to be overcome to facilitate diphenolic acid production on an industrial scale. The regioselectivity of the reaction is a critical point because only the p,p'-isomer is of industrial interest; thus, several strategies aiming at the improvement of the selectivity towards this isomer are considered. The future potential of adopting alkyl levulinates, instead of levulinic acid, as starting materials for the synthesis of new classes of biopolymers, such as new epoxy and phenolic resins and polycarbonates, is also briefly considered.

5.
Chempluschem ; 87(10): e202200189, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35997649

RESUMO

This work investigated the catalytic high-pressure CO2 pretreatment of giant reed. CO2 is a renewable resource; its use does not generate chemical wastes and it can be easily removed and recycled. The effect of the addition of low concentrations of FeCl3 (0.16 wt %) and PEG 400 (1.0 wt %) on the hemicellulose hydrolysis to xylose and xylo-oligosaccharides (XOS) is reported for the first time. Under the optimised pretreatment conditions, the xylan conversion of 82 mol % and xylose and XOS yields of 43 and 20 mol % were achieved, respectively. The solid residues obtained from different pretreatments were used as the substrate for the enzymatic hydrolysis to give glucose. The total glucose yield achieved under the optimised two-step process was 67.8 mol % with respect to the glucan units in the biomass. The results demonstrated that PEG-assisted FeCl3 -catalysed scCO2 pretreatment can produce xylose- or XOS-rich hydrolysates and improve the enzymatic hydrolysis of biomass.


Assuntos
Dióxido de Carbono , Xilose , Glucanos , Glucose , Oligossacarídeos/química , Xilanos
6.
ChemSusChem ; 15(13): e202200241, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35384331

RESUMO

The depletion of fossil resources is driving the research towards alternative renewable ones. Under this perspective, 5-hydroxymethylfurfural (HMF) represents a key molecule deriving from biomass characterized by remarkable potential as platform chemical. In this work, for the first time, the hydrogenation of HMF in ethanol was selectively addressed towards 2,5-bis(hydroxymethyl)furan (BHMF) or 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) by properly tuning the reaction conditions in the presence of the same commercial catalyst (Ru/C), reaching the highest yields of 80 and 93 mol%, respectively. These diols represent not only interesting monomers but strategic precursors for two scarcely investigated ethoxylated biofuels, 2,5-bis(ethoxymethyl)furan (BEMF) and 2,5-bis(ethoxymethyl)tetrahydrofuran (BEMTHF). Therefore, the etherification with ethanol of pure BHMF and BHMTHF and of crude BHMF, as obtained from hydrogenation step, substrates scarcely investigated in the literature, was performed with several commercial heterogeneous acid catalysts. Among them, the zeolite HZSM-5 (Si/Al=25) was the most promising system, achieving the highest BEMF yield of 74 mol%. In particular, for the first time, the synthesis of the fully hydrogenated diether BEMTHF was thoroughly studied, and a novel cascade process for the tailored conversion of HMF to the diethyl ethers BEMF and BEMTHF was proposed.


Assuntos
Biocombustíveis , Furaldeído , Etanol , Furaldeído/análogos & derivados , Furaldeído/química , Furanos/química
7.
Bioresour Technol ; 313: 123650, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32585455

RESUMO

A two-step exploitation of the giant reed cellulose to glucose and levulinic acid, after the complete removal of the hemicellulose fraction, was investigated using FeCl3 as catalyst. In the first step, the microwave-assisted hydrolysis of cellulose to glucose was optimised by response surface methodology analysis, considering the effect of temperature, reaction time and catalyst amount. Under the optimised reaction conditions, the glucose yield was 39.9 mol%. The cellulose-rich residue was also converted by enzymatic hydrolysis, achieving the glucose yield of 39.8 mol%. The exhausted residue deriving from the chemical hydrolysis was further converted to levulinic acid by microwave treatment at harsher reaction conditions. The maximum levulinic acid yield was 64.3 mol%. On the whole, this cascade approach ensured an extensive and sustainable exploitation of the C6 carbohydrates to glucose and levulinic acid, corresponding to about 70 mol% of glucan converted to these valuable bioproducts in the two steps.


Assuntos
Celulose , Micro-Ondas , Cloretos , Compostos Férricos , Glucose , Calefação , Hidrólise , Ácidos Levulínicos , Poaceae
8.
Bioresour Technol ; 244(Pt 1): 880-888, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28847076

RESUMO

For the first time, the exploitation of hazelnut shells for the combined production of levulinic acid (LA) and hydrochar was investigated. The optimization of the catalytic hydrothermal treatment was performed both in autoclave and microwave reactor, approaching a maximum LA yield of ∼9-12wt%. Hydrochars recovered with high yield (∼43-47wt%) were characterized by different techniques, including elemental and proximate analysis, heating value, FT-IR, XPS, XRD, SEM-EDX, and SAA. Their "lignite-like" energetic properties make them suitable for the energy recovery within the same biorefinery plant for LA production, thus partially offsetting the cost of the entire process. Alternatively, since the synthesized hydrochars maintain high levels of oxygenated groups, they could be smartly exploited as natural sorbents for environmental applications. The proposed integrated approach makes possible to fully exploit this waste, smartly closing its biorefinery cycle in a sustainable development perspective.


Assuntos
Corylus , Ácidos Levulínicos , Carvão Mineral , Temperatura Alta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...